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The Challenge oo e

PHEV requires high power density battery/energy storage for hybrid
operation and high energy density battery for EV mode range.

Battery Technologies to maximize power density and energy density
simultaneously, are not commercially feasible.

The use of bi-directional dc-dc converter allow use of multiple energy
storage, and the flexible dc-link voltages can enhance the system
efficiency and reduce component sizing.

Design a bi-directional dc-dc converter and fabricate a 5kwW POC unit to
demonstrate the following;

— High inlet and ambient temperatures ( > 105 °C)
— High efficiency (> 90 %)

— High power density (20 — 50 W/in3)

— Low cost (£ $75 kW)



Purpose of Work for FY08 /:,USHybmd

1. Vehicle modeling, simulation, and operation voltages optimization.
2. DC-DC Power converter and control modeling.

3. Silicon Carbide device specifications.
4

. Silicon Carbide and MOSFET comparative performance evaluation.

Key Technical Challenges
 High inlet and ambient temperatures ( > 105 °C)
o High efficiency ( Target > 90 %), Estimated 95% (@ rated power)
e High power density (20 — 50 W/in3), Estimated > 16 W/in3
e Cost: <$ 75 /kW for 75,000 guantities
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Fig 2. Single Battery with DC-DC converter and DC link Voltage Regulation
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Fig 3. Dual Energy Storage System (one optimized for power
density and one optimized for energy density) with DC-DC
converter and DC link Voltage Regulation
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Fig 5. Typical Battery cost $/kWhr vs. $/kW. Fig 6. Battery cycle life cost $/ EV-PHEV/mile.



All-SIC Dc-Dc Bidirectional Converter

Bidirectional DC-DC Converter
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SIC VJFET Advantages

Comparison of the on resistances and output capacitances of
SiC VJFET with state-of-the-art MOSFETS.

Device Type | Ratings | 52ie P15 | 00+ 25°C [180°C 200
Siéi\é‘]EFDE)T 600V, 10 A| 0.42 | 0.74 | 0.8 | ~350 | ~350 | ~350
e, 600V, 11A[ 038 | 0.83 | N/A | ~700 | ~700 | N/A
NS 1600V, 11A| 038 | 095 | N/A | ~550 | ~550 | N/A
CoolMOS 20N60S5( 600 V, 20 A| 0.2 | 0.49 | N/A | ~900 | ~900 | N/A

» For the same device rating, SIC VJFET provides superior on resistance and output
capacitance as compared to the Si field-effect devices. That implies lower
conduction as well as switching losses.

» For a Si device with higher current rating, lower on resistance comes at the price of
higher output capacitance. This implies, lower conduction loss, but higher switching

losses. The latter can limit maximum switching frequency and power density.
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Optimal Number of Converter Modules
and Switches per Module
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o Selection based on estimated
efficiency and cost
— SIC VJFET operating at 175 °C
— Planar magnetics operating at 140 °C

e Optimized values
— Number of converter modules: 3
— Number of switches per module: 2 x 4
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Issues:

o SIC are normally-on devices and require < - 25 V to turn off
« Self-contained ASICs are not available leading to discrete design of protection circuits
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Planar Inductors Design

e Core: Ferrite LP3A
e Number of turns: 18
e Loss increases by 1.2 W/°C

71.00

| I
2

Variation of Flux Density Variation of Power Loss
with Temperature with Load
6000 — ! 14
O%earr?éleng ..... |LP3a L] 1 L Pt Rated operating
5000 ! —~~ o H
e S, . @105C A | point
i 7 & /
5 3000 // — 5 /
B || . A
— O I
5 50 100 150 200 250 0 5 10 15 20 25

T(C) Average Current (A)



CAD Layout Design
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Operating Modes Simulation Waveforms

Motoring mode, where the power flows from the 100

— 180 V energy-source battery to the dc bus I _ T
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transferred most likely from the dc bus to the 100 -
180 V battery energy source.
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Efficiency Variations (Design Estimations)
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Projected efficiency with
Dynamic Power Management
/

100 100
~ 98 7777777777777777777777777777777777777777777777 ~ 96
S 3
9% | > 92
S —+—% &
S 94 | O 88
(-
i i

e 84

90 80

100 120 140 160 180 200 1000 2000 3000 4000 5000
Input Voltage (V) Load Power (W)

15



Phase | Activities for 2008 /:)I'JS...V,:,O.

 Collect data from battery and other sub-system supplier

« Complete the dc voltage optimization modeling
*Characterize the power devices and magnetic components.
 Fabricate and Characterize the Sic converter

« Fabricate and characterize the Si converter

* Design the integrated magnetic, sensor and Power Silicon.

16
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DC voltage optimizations.
— Vehicle Configurations defined
— Motor and inverter Supplier Cost and loss model data is needed.
— Battery Supplier Cost and loss model data is needed.
— Drive Cycle for the study is US06
Sic Converter.
— Magnetic and power stage designed
— Gate Driver designed and molded.
— Converter System modeling.
Si Converter.

— Magnetic and power stage design on-going.
— Integrated Magnetic, Silicon and Sensors design ongoing.
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